
Projectile Motion

Projectile motion is a special case of two-dimensional motion. A particle moving in a vertical 

plane with an initial velocity and experiencing a free-fall (downward) acceleration, displays 

projectile motion. Some examples of projectile motion are the motion of a ball after being 

hit/thrown, the motion of a bullet after being fired and the motion of a person jumping off a 

diving board. For now, we will assume that the air, or any other fluid through which the object is

moving, does not have any effect on the motion. In reality, depending on the object, air can 

play a very significant role. For example, by taking advantage of air resistance, a parachute 

can allow a person to land safely after jumping off an airplane. These effects are very briefly 

discussed at the end of this module.  

Projectile Motion Analysis

Before proceeding, the following subsection provides a reminder of the three main 

equations of motion for constant acceleration. These equations are used to develop the 

equations for projectile motion. 

Equations of Motion for Constant Acceleration

The following equations are three commonly used equations of motion for an object 

moving with a constant acceleration. 



... Eq. (1)

... Eq. (2)

... Eq. (3)

Here,  is the acceleration, v is the speed,  is the initial speed,  is the position,  is the 
initial position and  is the time. 

To begin, consider an object with an initial velocity  launched at an angle of

 measured from the positive x-direction. The x- and y-components of the object's initial 

velocity,  and  , can be written as

and     

... Eq. (4) and Eq. (5)

Here, the x-axis corresponds to the horizontal direction and the y-axis corresponds to the 

vertical direction. Since there is a downward acceleration due to gravity, the y-component of

the object's velocity is continuously changing. However, since there is no horizontal 

acceleration, the x-component of the object's velocity stays constant throughout the motion. 

Breaking up the motion into x- and y-components simplifies the analysis. 

The Horizontal Component

Horizontal Displacement

Using Eq. (2), at a time , the horizontal displacement for a projectile can be be written
as



... Eq. (6)

where,  is the initial position and is the horizontal acceleration. Since  and 
, the above equation reduces to

... Eq. (7)

Eq. (7) is the equation for the horizontal displacement of a projectile as a function of 

time. This shows that, before the projectile hits the ground or encounters any other 

resistance, the horizontal displacement changes linearly with time.

Horizontal Velocity

Using Eq. (1), the horizontal velocity can be written as

... Eq. (8)

which further reduces to

... Eq. (9)

Since  and  are constants, this equation shows that the horizontal velocity remains 
unchanged throughout the motion.

The Vertical Component

Vertical Displacement

Using Eq. (2), at a time , the vertical displacement for the projectile can be written as

... Eq. (10)



where,  is the initial position and is the vertical acceleration. Since  and 
, the above equation reduces to

... Eq. (11)

Eq. (11) is the equation for the vertical displacement of a projectile as a function of 

time. Unlike the horizontal displacement, the vertical displacement does not vary 

linearly with time. 

Vertical Velocity

Using Eq. (1), the vertical velocity can be written as

... Eq. (12)

Since  and , this can be further written as

... Eq. (13)

This equation shows that the vertical component of the velocity continuously changes 
with time. 

Also, using Eq. (3), the vertical velocity can be expressed as

 
... Eq. (14)

which can be further written as 

... Eq. (15)

This equation provides a relation between the vertical velocity and the vertical 
displacement. 



Maximum Vertical Displacement

When an object is launched with a positive vertical velocity component, the vertical 

velocity becomes zero at the point where the maximum height is reached. Hence, 

substituting  in Eq. (15) gives the following equation for the maximum vertical 

displacement of a projectile. 

... Eq. (16)

Also, from Eq. (16) observe that, to achieve the maximum possible vertical 

displacement for a fixed initial velocity,  should be equal to 1. This happens 

when  is 90 (-90  is also valid mathematically but not physically. Mathematically, 

with a launch angle of -90 , the velocity is zero at a negative time). Therefore, to 

achieve the maximum height, an object must be launched straight up, which is also 

what intuition would tell us.  

The Path Equation

By combining Eq. (7) and Eq. (11), an equation for the projectile's trajectory can be 

obtained. Rearranging Eq. (7) to isolate for  and substituting it into Eq. (11) gives

... Eq. (17)

This is the equation for the path of a projectile. If the initial conditions are known, then the

path of the projectile can be determined. Due to the quadratic form of the equation, each 

y-position has two corresponding x-positions. These different x-positions correspond to 

different time values. For example, when a ball is thrown, it can cross a certain height 



twice, once on the way up and once on the way down. It should also be noted that, due 

to the tan and cos terms, this path equation is not defined at 90  and -90 . This can also 

be understood by the fact that there will be many y-positions for the same initial x-

position. 

In the following plot, the dashed line shows the trajectory of a projectile launched at an 

initial height of 1m, with an initial velocity of 4m/s and at an angle of 45  from the 

horizontal. The sliders can be used to adjust the initial conditions and observe the new 

trajectory (solid line). 

Initial height (m) Launch angle (deg) Initial velocity (m/s)

1.50.5 2.01.00.0 45.090.0-90.0-45.00.0 4.03.02.01.00.0

Horizontal Range 

The horizontal range can be defined as the horizontal distance a projectile travels 

before returning to its launch height. When the final height is equal to the launch 

height (i.e. ), Eq. (11) reduces to the following,



... Eq. (18)

When  is non-zero, this equation can be written as

... Eq. (19)

By substituting Eq. (18) into Eq. (7), the following equation is obtained

... Eq. (20)

Using the identity  gives

.... Eq. (21)

This shows that the horizontal displacement, when the projectile returns to the launch 

height, is greatest when This means that the range is maximum when 

the launch angle is 45 . The following plot shows the trajectory of a projectile 

launched with an initial velocity of 10 m/s, at an angle of 45  and with no initial height 

(dashed line). The launch angle can be varied to observe the effect on the range.  

Launch angle (deg)

90.060.030.00.0



Examples with MapleSim

Example 1: Tennis Serve

Problem statement: A tennis player serves a ball with a speed of 30m/s. The ball leaves

the racquet at a height of 2.5m and a horizontal distance of 12.25m from the net. The 

height of the net is 0.91m. 

a) If the ball leaves the racquet horizontally, will the ball clear the net? 

b) If the ball leaves the racquet at an angle of 10  below the horizontal, will the ball clear 

the net?

c) What is the minimum angle at which the ball must leave the racquet for it to clear the 

net?

Analytical Solution

Data:



[m/s]

[m]

[m]

[m]

[rad]

(Converting the angle from degrees to radians so that it can be used in the inbuilt trigonometric functions. 1 degree = Pi/180 radians.
)  

[m/s2]

Solution:

Part a) Determining if the ball clears the net if it leaves the racquet horizontally.

The time it takes the ball to reach the net can be solved for using Eq. (7).

 = 

The height of the center of the ball when it reaches the plane of the net can be 

calculated using Eq. (11).

 = 

Since  is greater than 0.91m, the ball clears the net for this serve.

In the following plot, the solid line shows the trajectory of the ball for this case. The 

dotted lines show the x- and y-positions of the ball when it reaches the plane of the

net and the dashed line represents the net. 

Trajectory - Part a). Trajectory - Part a). 



Part b) Determining if the ball clears the net it if leaves the racquet at an angle 
10 below the horizontal. 

Using the same approach as Part a), the time that the ball takes to reach the net 

can be solved for using Eq. (7).

 = 
at 5 digits

0.41462

The height of the center of the ball when it reaches the plane of the net can be 

calculated using Eq. (11).

 = 

Since y2 is negative, it means that the ball bounced on the ground before reaching 



(2.1.1.3.1)(2.1.1.3.1)

the net. A negative value is obtained since the equations do not account for the 

presence of the ground. In the following plot, the solid line shows the trajectory of 

the ball for this case and the dashed line represents the net. 

Trajectory - Part b).Trajectory - Part b).

Part c) Finding the minimum angle required to clear the net. 

For the ball to hit the top of the net, the height of the ball should be equal to the 

height of the net when the ball reaches the plane of the net. By combining Eq. (7) 

and Eq. (11), and substituting the parameters specific to this problem, the following

equation is obtained.

Due to the form of the equation, there are many angles that satisfy it. For this case,

only the smallest angle in the first and fourth quadrant are of interest. The two 

angles in the first and fourth quadrant are 1.504 rad and -0.063 rad. The smaller of 



the two angles is -0.063 rad, which is approximately equal to -3.6 . Therefore, the 

ball must leave the racquet at an angle slightly greater than -3.6 for it to just clear 

the net.  

In the following plot, the solid line shows the trajectory of the ball of this case. The 

dotted lines show the x- and y- positions of the ball when it reaches the plane of 

the net and the dashed line represents the net. 

Trajectory - Part c).Trajectory - Part c).

MapleSim Simulation

Constructing the model

Step1: Insert Components

Drag the following components into the workspace: 

Table 1: Components and locations 

Compon
ent

Location

Multibody > 
Body and 

Frames



Multibody > 
Visualization

Multibody > 
Sensors

Signal Blocks 
> Routing > 

DeMultiplexers
 

Signal Blocks 
> Relational

Signal Blocks 
> Terminate

Multibody > 
Body and 

Frames

Multibody > 
Body and 

Frames

Step 2: Connect the components

Connect the components as shown in the following diagram (the dashed boxes are

not part of the model, they have been drawn on top to help make it clear what the 



different components are for). 

Fig. 1: Component diagram

Step 3: Create parameters

Click the Add a Parameter Block icon ( ), click on the workspace and double 

click the Parameters icon that will appear on the workspace. Create parameters 

for the initial height of the ball , the initial speed of the ball , the distance to the 

net , and the launch angle  (see Fig. 2). 

Fig. 2: Parameter Block settings

Step 4: Adjust the parameters

Return to the main diagram (  > ) and, with a single click on the

Parameters icon, enter the following parameters (Fig. 3) in the Inspector tab. 



Fig. 3: Parameters 

Note: Step 3 and Step 4 are not essential and can be skipped. The parameter 

values can be directly entered for each component instead of using variables. 

However, creating a parameter block as described above makes it easy to 

repeatedly change the parameters and play around with the model to see the 

effects on the simulation results. 

Step 5: Change the initial conditions

Return to the main diagram and click the Rigid Body component. As shown below,

enter the initial conditions in the Inspector tab in terms of the parameters. 



1. 1. 

Fig. 4: Rigid Body Parameters 

Step 6: Set up the net

This step creates a rod that helps visualize the top of the net in the 3-D view. The 

length of a tennis net is approximately 11m and the height of the top of the net is 

approximately 0.91m at the center. 

Click the Fixed Frame component and, as shown in Fig. 5, enter 



2. 2. 

1. 1. 

 for the location of the Fixed Frame.  

Fig. 5: Fixed Frame Parameters 

Then, as shown in Fig. 6, click the Rigid Body Frame component and 

change the length in the z direction to 11m. This length is not important and 

does not affect the results of the simulation, it just aids with the visualization. 

Fig. 6: Rigid Body Frame Parameters 

Step 7: Add a plot window for the trajectory



1. 1. 

1. 1. 

3. 3. 

2. 2. 

1. 1. 

2. 2. 

Attach a Probe as shown in Fig. 1. 

Click the probe and select 1 and 2 in the Inspector tab. In this case, 1 

corresponds to the x-position and 2 corresponds to the y-position. 

Using the Plot tab, add a Plot window for the trajectory of the ball. To add a 

window, click the drop down menu that says Default Plot Window and click --
Add Window--. After giving the window a name, click OK and then click

Empty to show the plot options. Give the plot a title and set up the plot to 

show Probe1: value[1] on the x-axis and Probe2: value[2] on the y-axis. 

Step 8: Run the simulation

Click the Greater Equal Threshold component and enter d in the threshold 

textbox in the Inspector tab. 

Run the simulation for theta=0 (Problem Part a). 

The simulation can be rerun by changing the other parameters to see the different 

combinations of speed, angle, height and distance that allow the ball to clear the net. 

The following image shows what the 3-D view should look like for Part c) of the 

problem. 

Fig. 7: 3-D view of the tennis ball simulation

Example 2: Target Shooting

Problem Statement: An air rifle that shoots pellets with a speed of 100 m/s is to be 

aimed at an apple placed 100 m away. The center of the apple is at the same height as 

the muzzle. 



1. 1. 

1. 1. 

(2.2.1.1.1)(2.2.1.1.1)

a) At what angle above the horizontal must the rifle be pointed so that the pellet hits the 

apple dead center?

b) How high above the center of the apple should the rifle be aimed?

c) What is the maximum vertical displacement of the pellet when it follows the required 

trajectory?

d) What is the vertical velocity of the pellet 0.25 sec before it hits the target?  

Analytical Solution

Data:

[m/s]

[m]

[m/s2

]

Solution:

Part a) Determining the rifle angle required to hit the target dead center.

Since the muzzle exit and the target are at the same height, for the pellet to hit the 

center of the target, the vertical displacement of the pellet should be zero when the

pellet reaches the plane of the target. By combining Eq. (7) and Eq. (11), and 

substituting the parameters specific to this problem, the following equation is 

obtained.



1. 1. 

1. 1. 

Due to the form of the equation, there are many angles that satisfy it. For this case,

only the smallest angle in the first quadrant, which is 0.049 rad or 2.81 , is of 

interest. Therefore, the rifle needs to be pointed at an angle of 2.81 above the 

horizontal to hit the target dead center.

Part b) Determining the height of the point above the target that has to be aimed at. 

If the rifle needs to be pointed at an angle of , it needs to be aimed at a point 

above the center of the target.

Since, 

the height above the target to which the rifle should be pointed is,

 = 

Therefore, the rifle has to aimed at a point 4.9 m above the target for the pellet to 

hit the target dead center.

The following plot contains the pellet trajectory and the line of sight of the rifle.  

Trajectory - Part c).Trajectory - Part c).

Part c) Determining the maximum vertical displacement of the pellet for the required 
trajectory. 



1. 1. 

1. 1. 

Using Eq. (16), the maximum vertical displacement of the bullet is

 = 

Therefore, the maximum vertical displacement of the pellet for the required 
trajectory is 1.22 m. 

Part d) Determining the vertical velocity of the pellet 0.25 sec before impact. 

The total time it takes the pellet to strike the target can be found using Eq. (7). 

 = 

The vertical velocity 0.25 sec before impact can be calculated using Eq. (13). 

 = 

Therefore, the velocity of the pellet 0.25 seconds before impact is -2.45 m/s. 

MapleSim Simulation

Constructing the Model

Step1: Insert Components

Drag the following components into the workspace: 

Table 2: Components and locations 

Comp
onent

Location

 

(2 
require

d)

Multibody > 
Body and 

Frames

Multibody > 
Visualization

Multibody > 



1. 1. 

1. 1. 

Sensors

Signal Blocks
> Routing > 

DeMultiplexer
s 

Signal Blocks
> Relational

Signal Blocks
> Boolean

Multibody > 
Body and 

Frames

Step 2: Connect the components

Connect the components as shown in the following diagram. 

Fig. 8: Component diagram

Step 3: Create parameters

Click the Add a Parameter Block icon ( ), click on the workspace and double 

click the Parameters icon that will appear on the workspace. Create parameters 

for the initial speed of the ball , the distance to the target , and the launch angle 

 (as shown below). 



1. 1. 

1. 1. 

Fig. 9: Parameter Block Settings

Step 4: Adjust the parameters

Return to the main diagram (  > ), then click the Parameters icon in

the workspace. Change the parameters in the Inspector tab as shown in Fig 10. 

Fig. 10: Parameters

Step 5: Change the initial conditions

Return to the main diagram and click the Rigid Body component that corresponds 

to the rifle pellet. As shown in Fig. 11, enter the following initial conditions (Fig. 11) 

in the Inspector tab in terms of the parameters. 



1. 1. 

1. 1. 

Fig. 11: Rigid Body Parameters 

Step 6: Set up the target

This step creates another sphere that represents the apple. This helps visualize 
the target in the 3-D view.  

Click the Fixed Frame component and change the position of the fixed frame to [d,
0,0].

Step 7: Add a plot window for the trajectory



1. 1. 

1. 1. 

1. 1. 

2. 2. 

1. 1. 

2. 2. 

Click Probe 1 and select 1 and 2 in the Inspector tab. In this case, 1 

corresponds to the x-position and 2 corresponds to the y-position. 

Using the Plot tab, add a plot window for the trajectory of the pellet. To add a 

window, click the Default Plot Window drop down menu and click --Add 
Window--. After giving the window a name, click OK and then click Empty to 

show the plot options. Give the plot a title and set up the plot to show Probe1:
value[1] on the x-axis and Probe2: value[2] on the y-axis. 

Step 8: Run the simulation

Click Probe 2 and select 1 and 2 in the Inspector tab. Also, click on the

Greater Equal Threshold component and enter d in the threshold textbox in 

the Inspector tab. 

Click Run Simulation ( ). 

The following figure shows the 3-D visualization for the simulation. 

Fig. 12: 3-D visualization

One step further: Incorporating Drag 

Drag force refers to the force that opposes the relative motion of an object in a fluid. In the 

case of the tennis ball, it is resistance offered by the air.  

The force due to drag is expressed using the following equation:



1. 1. 

1. 1. 

... Eq. (22)

where,  is the coefficient of drag,  is the density of the fluid,  is the characteristic area of

the object and  is the speed of the object relative to the fluid. In the case of a ball, the 

characteristic area is the area of cross-section. The coefficient of drag depends on a lot of 

different factors and is usually very difficult to calculate analytically. Hence the coefficient of 

drag is usually found through experiments or using numerical methods. For the case of a 

sphere, coefficient of drag curves are commonly available in textbooks and the internet. Fig.

13 is obtained from the www.nasa.gov website (available at: http://www.grc.nasa.

gov/WWW/k-12/airplane/dragsphere.html). 

Fig. 13: Coefficient of drag for spheres.

As can be seen, the coefficient of drag is plotted as a function of the Reynolds number Re. 

This a dimensionless number which is very commonly used in the field of fluid dynamics. It 

gives a measure of the ratio of inertial forces to viscous forces. For a sphere the Reynolds 



1. 1. 

1. 1. 

number is expressed as,

... Eq. (23)

where,  is the density of the fluid,  is the velocity of the flow, D is the diameter of the 

sphere and  is the viscosity of the fluid. 

If the ball is moving through the air with a velocity of  then the direction of the 

drag force will be in a direction opposite to this vector. The magnitude of this drag force will 

be given by Eq. (22). In vector form this force will be

... Eq. (24)

This can be simplified and written as,

... Eq. (25)

where,  is the speed of the ball. 

This can be incorporated into the MapleSim model as shown in the following diagram. Since

the coefficient of drag is not constant, points from the curve are input into a Microsoft Excel 

spreadsheet in the form of a table and attached to the model. For the case of the tennis ball,

the curve that corresponds to a rough sphere has been used. This data can then be used by

the 1D Lookup Table component which interpolates between the points. 



1. 1. 

1. 1. 

Fig. 14: Component diagram for the Tennis example with drag. 

This model can be played around with to see the effect of drag. Its results can then be 

compared to the previous model that does not include drag to see the differences. For a ball

moving at a speed around 30 m/s, the Re number is approximately . By looking at the

coefficient of drag curve, it can be seen that the coefficient of drag for this Re number is 

approximately 0.2 which is not very high. It can also be observed that the coefficient of drag 

values suddenly dips around a Re number of  for rough spheres. This early reduction of 

drag for rough spheres plays a significant role is sports like tennis, golf, baseball, cricket, 

etc. 

By running this simulation with theta equal to 0 and = 30m/s, the ball is predicted to be 

approximately 1.3 mm lower at the net than the prediction of the model without drag. This 

shows that neglecting drag in this case is an extremely good assumption.  

Reference:
Halliday et al. "Fundamentals of Physics", 7th Edition. 111 River Street, NJ, 2005, John Wiley 
& Sons, Inc. 


